Meteor
Meteor showers occur annually or at regular intervals as the Earth passes through the trail of dusty debris left by a comet. Meteor showers are usually named after a star or constellation that is close to where the meteors appear in the sky. Perhaps the most famous are the Perseids, which peak in August every year. Every Perseid meteor is a tiny piece of the comet Swift-Tuttle, which swings by the Sun every 135 years.
Meteor
By default, the Meteor installer adds its install path (by default, /.meteor/) to your PATH by updating either your .bashrc, .bash_profile, or .zshrc as appropriate. To disable this behavior, install Meteor by running:
If you use a node version manager that uses a separate global node_modules folder for each Node version, you will need to re-install the meteor npm package when changing to a Node version for the first time. Otherwise, the meteor command will no longer be found.
Meteoroids are defined as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide.[2] Objects smaller than this are classified as micrometeoroids or space dust.[2][3][4] Most are fragments from comets or asteroids, whereas others are collision impact debris ejected from bodies such as the Moon or Mars.[5][6][7]
When a meteoroid, comet, or asteroid enters Earth's atmosphere at a speed typically in excess of 20 km/s (72,000 km/h; 45,000 mph), aerodynamic heating of that object produces a streak of light, both from the glowing object and the trail of glowing particles that it leaves in its wake. This phenomenon is called a meteor or "shooting star". Meteors typically become visible when they are about 100 km above sea level. A series of many meteors appearing seconds or minutes apart and appearing to originate from the same fixed point in the sky is called a meteor shower. A meteorite is the remains of a meteoroid that has survived the ablation of its surface material during its passage through the atmosphere as a meteor and has impacted the ground.
An estimated 25 million meteoroids, micrometeoroids and other space debris enter Earth's atmosphere each day,[8] which results in an estimated 15,000 tonnes of that material entering the atmosphere each year.[9]
In 1961, the International Astronomical Union (IAU) defined a meteoroid as "a solid object moving in interplanetary space, of a size considerably smaller than an asteroid and considerably larger than an atom".[10][11] In 1995, Beech and Steel, writing in the Quarterly Journal of the Royal Astronomical Society, proposed a new definition where a meteoroid would be between 100 µm and 10 m (33 ft) across.[12] In 2010, following the discovery of asteroids below 10 m in size, Rubin and Grossman proposed a revision of the previous definition of meteoroid to objects between 10 µm and one meter (3 ft 3 in) in diameter in order to maintain the distinction.[2] According to Rubin and Grossman, the minimum size of an asteroid is given by what can be discovered from Earth-bound telescopes, so the distinction between meteoroid and asteroid is fuzzy. Some of the smallest asteroids discovered (based on absolute magnitude H) are 2008 TS26 with H = 33.2[13] and 2011 CQ1 with H = 32.1[14] both with an estimated size of one m (3 ft 3 in).[15] In April 2017, the IAU adopted an official revision of its definition, limiting size to between 30 µm and one meter in diameter, but allowing for a deviation for any object causing a meteor.[16]
Almost all meteoroids contain extraterrestrial nickel and iron. They have three main classifications: iron, stone, and stony-iron. Some stone meteoroids contain grain-like inclusions known as chondrules and are called chondrites. Stony meteoroids without these features are called "achondrites", which are typically formed from extraterrestrial igneous activity; they contain little or no extraterrestrial iron.[17] The composition of meteoroids can be inferred as they pass through Earth's atmosphere from their trajectories and the light spectra of the resulting meteor. Their effects on radio signals also give information, especially useful for daytime meteors, which are otherwise very difficult to observe. From these trajectory measurements, meteoroids have been found to have many different orbits, some clustering in streams (see meteor showers) often associated with a parent comet, others apparently sporadic. Debris from meteoroid streams may eventually be scattered into other orbits. The light spectra, combined with trajectory and light curve measurements, have yielded various compositions and densities, ranging from fragile snowball-like objects with density about a quarter that of ice,[18] to nickel-iron rich dense rocks. The study of meteorites also gives insights into the composition of non-ephemeral meteoroids.
Most meteoroids come from the asteroid belt, having been perturbed by the gravitational influences of planets, but others are particles from comets, giving rise to meteor showers. Some meteoroids are fragments from bodies such as Mars or the Moon, that have been thrown into space by an impact.
Meteoroids travel around the Sun in a variety of orbits and at various velocities. The fastest move at about 42 km/s (94,000 mph) through space in the vicinity of Earth's orbit. This is escape velocity from the Sun, equal to the square root of two times Earth's speed, and is the upper speed limit of objects in the vicinity of Earth, unless they come from interstellar space. Earth travels at about 29.6 km/s (66,000 mph), so when meteoroids meet the atmosphere head-on (which only occurs when meteors are in a retrograde orbit such as the Eta Aquariids, which are associated with the retrograde Halley's Comet) the combined speed may reach about 71 km/s (160,000 mph) (see Specific energy#Astrodynamics). Meteoroids moving through Earth's orbital space average about 20 km/s (45,000 mph).[19]
When meteoroids intersect with Earth's atmosphere at night, they are likely to become visible as meteors. If meteoroids survive the entry through the atmosphere and reach Earth's surface, they are called meteorites. Meteorites are transformed in structure and chemistry by the heat of entry and force of impact. A noted 4-metre (13 ft) asteroid, 2008 TC3, was observed in space on a collision course with Earth on 6 October 2008 and entered Earth's atmosphere the next day, striking a remote area of northern Sudan. It was the first time that a meteoroid had been observed in space and tracked prior to impacting Earth.[10] NASA has produced a map showing the most notable asteroid collisions with Earth and its atmosphere from 1994 to 2013 from data gathered by U.S. government sensors (see below).
A meteor, known colloquially as a shooting star or falling star, is the visible passage of a glowing meteoroid, micrometeoroid, comet or asteroid through Earth's atmosphere, after being heated to incandescence by collisions with air molecules in the upper atmosphere,[10][23][24] creating a streak of light via its rapid motion and sometimes also by shedding glowing material in its wake. Although a meteor may seem to be a few thousand feet from the Earth,[25] meteors typically occur in the mesosphere at altitudes from 76 to 100 km (250,000 to 330,000 ft).[26][27] The root word meteor comes from the Greek meteōros, meaning "high in the air".[23]
Millions of meteors occur in Earth's atmosphere daily. Most meteoroids that cause meteors are about the size of a grain of sand, i.e. they are usually millimeter-sized or smaller. Meteoroid sizes can be calculated from their mass and density which, in turn, can be estimated from the observed meteor trajectory in the upper atmosphere.[28]Meteors may occur in showers, which arise when Earth passes through a stream of debris left by a comet, or as "random" or "sporadic" meteors, not associated with a specific stream of space debris. A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the meteoroids producing the meteors have been calculated. The atmospheric velocities of meteors result from the movement of Earth around the Sun at about 30 km/s (67,000 mph),[29] the orbital speeds of meteoroids, and the gravity well of Earth.
Meteors become visible between about 75 to 120 km (250,000 to 390,000 ft) above Earth. They usually disintegrate at altitudes of 50 to 95 km (160,000 to 310,000 ft).[30] Meteors have roughly a fifty percent chance of a daylight (or near daylight) collision with Earth. Most meteors are, however, observed at night, when darkness allows fainter objects to be recognized. For bodies with a size scale larger than 10 cm (3.9 in) to several meters meteor visibility is due to the atmospheric ram pressure (not friction) that heats the meteoroid so that it glows and creates a shining trail of gases and melted meteoroid particles. The gases include vaporised meteoroid material and atmospheric gases that heat up when the meteoroid passes through the atmosphere. Most meteors glow for about a second.
Although meteors have been known since ancient times, they were not known to be an astronomical phenomenon until early in the nineteenth century. Prior to that, they were seen in the West as an atmospheric phenomenon, like lightning, and were not connected with strange stories of rocks falling from the sky. In 1807, Yale University chemistry professor Benjamin Silliman investigated a meteorite that fell in Weston, Connecticut.[31] Silliman believed the meteor had a cosmic origin, but meteors did not attract much attention from astronomers until the spectacular meteor storm of November 1833.[32] People all across the eastern United States saw thousands of meteors, radiating from a single point in the sky. Careful observers noticed that the radiant, as the point is now called, moved with the stars, staying in the constellation Leo.[33]
The astronomer Denison Olmsted made an extensive study of this storm, and concluded that it had a cosmic origin. After reviewing historical records, Heinrich Wilhelm Matthias Olbers predicted the storm's return in 1867, which drew the attention of other astronomers to the phenomenon. Hubert A. Newton's more thorough historical work led to a refined prediction of 1866, which proved to be correct.[32] With Giovanni Schiaparelli's success in connecting the Leonids (as they are now called) with comet Tempel-Tuttle, the cosmic origin of meteors was now firmly established. Still, they remain an atmospheric phenomenon, and retain their name "meteor" from the Greek word for "atmospheric".[34] 041b061a72